

Developing Novel Treatments for Fibrotic Diseases

MARCH 2023

Disclaimers

This presentation has been prepared by Pliant Therapeutics, Inc. ("we," "us," "our," "Pliant" or the "Company"). The information set forth herein does not purport to be complete or to contain all of the information you may desire. Statements contained herein are made as of the date of this presentation unless stated otherwise, and this presentation shall not under any circumstances create an implication that the information contained herein is correct as of any time after such date or that information will be updated or revised to reflect information that subsequently becomes available or changes occurring after the date hereof.

This presentation includes forward-looking statements regarding Pliant's proprietary drug candidates, the timing of the start and conclusion of ongoing or planned clinical trials, including the timing of, and our ability to achieve, anticipated milestones, the sufficiency of our cash, cash equivalents and short-term investments, the timing and outcome of regulatory decisions, future availability of clinical trial data, our collaborations for our product candidates and the maintenance of those collaborations; business and results from operations; and other matters. Actual results could differ materially from those contained in any forward-looking statements as a result of various factors, including without limitation: that Pliant's drug candidates do not advance in development or result in approved products on a timely or cost effective basis or at all; the cost, timing and results of clinical trials; our ability to manage and mitigate the impact of the ongoing COVID-19 pandemic; that many drug candidates that have completed early-stage trials do not become approved drugs on a timely or cost effective basis or at all; the ability to enroll patients in clinical trials; possible safety and efficacy concerns; regulatory developments; the ability of Pliant to protect its intellectual property rights, and unexpected costs, charges or expenses that reduce cash runway. Pliant's pipeline programs are in various stages of pre-clinical and clinical development, and the process by which such pre-clinical or clinical therapeutic candidates could potentially lead to an approved therapeutic is long and subject to significant risks and uncertainties. Pliant undertakes no obligation to update forward-looking statements as a result of new information or otherwise. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" and elsewhere in the Company'

This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and growth and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions, and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk.

This presentation concerns drugs that are under clinical investigation and which have not yet been approved for marketing by the U.S. Food and Drug Administration (the "FDA"). They are currently limited by Federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.

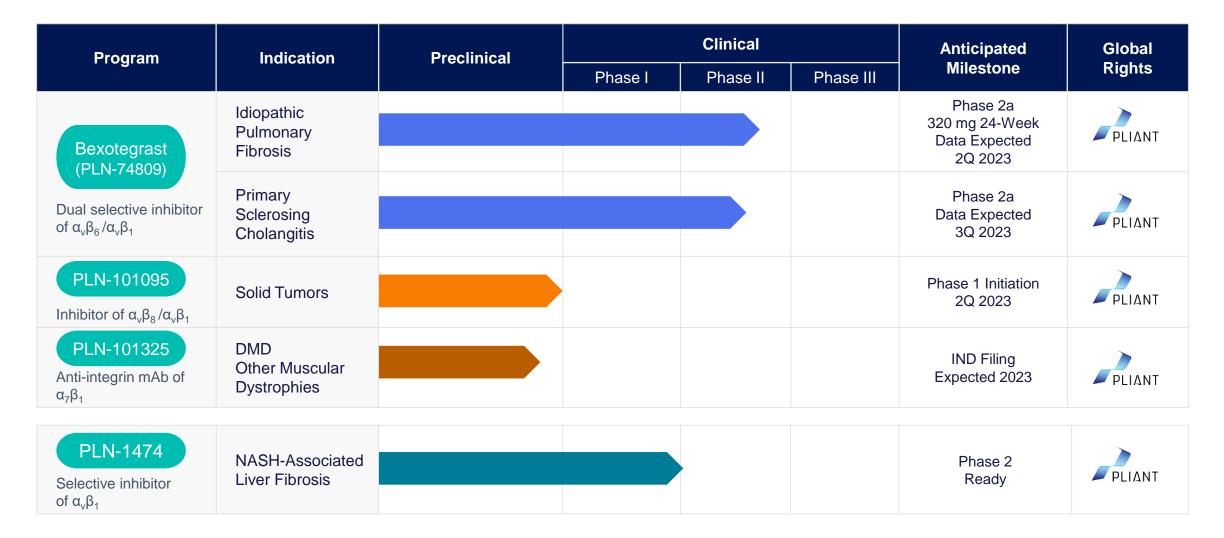
Pliant – Company Highlights

Industry-Leading Fibrosis Platform

- Inhibition of integrin-mediated TGF-β activation resulting in antifibrotic effect and shown to be well-tolerated
- Proprietary drug discovery platform In-house compound library of integrin binders

Programs Targeting High Unmet Medical Need with High-Impact, Near-Term Catalysts

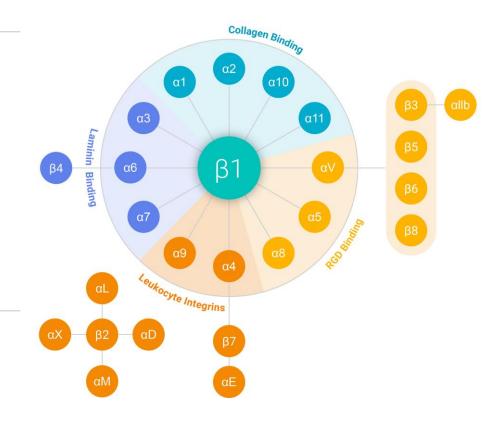
- Bexotegrast (PLN-74809) in Phase 2a development in IPF and PSC
 - Well tolerated with clear treatment effect on FVC and lung fibrosis (QLF) in IPF patients
- IND cleared for PLN-101095 potential first-in-class small molecule dual $\alpha_V \beta_8 / \alpha_V \beta_1$ inhibitor addressing ICI resistance


Strong Financial Position

- Over \$895M raised to date including 2020 IPO (Nasdaq: PLRX), \$230M follow on (July 2022), \$287.5M million follow on (January 2023)
- \$601M proforma cash¹ balance as of December 31, 2022
- Operations funded into second half 2026 together with loan agreement and follow on proceeds

1 – Proforma for January 2023 \$287.1M equity offering. Includes cash, cash equivalents and short-term investments.

Pliant Development Pipeline

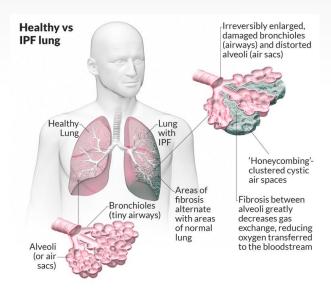

Pliant's Integrin Focused Library Core Platform for Novel Pipeline and Partner Programs

Integrins

- Cell surface receptors that facilitate cell-cell and cell-extracellular matrix adhesion and interaction
- A major path of communication between the extracellular matrix, inflammatory cells, fibroblasts
- Closely involved in signaling processes governing tissue fibrosis

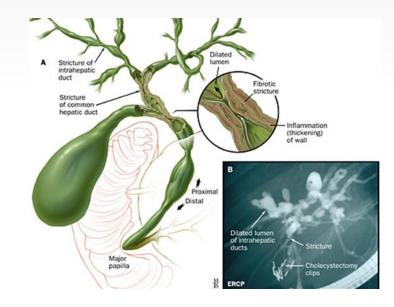
Pliant's Proprietary Library of 10,000+ Integrin Binding Compounds

- Emphasis on optimal pharmacokinetic and selectivity profile
- Broad spectrum of receptor subfamilies including α_V integrins, collagen and laminin binders



Fibrosis – A Silent Killer

Idiopathic Pulmonary Fibrosis (IPF) is a lethal pathological process with limited therapeutic options


- 140k patients in the U.S.; 30k-40k new cases/year;
 40k deaths/year
- Median survival: 3–5 years Worse than some common cancers

Primary Sclerosing Cholangitis (PSC) is a progressive inflammatory liver disease resulting in scarring of bile ducts, and cirrhosis

- 30k-45k patients in the U.S.
- Median survival: 10-12 years without intervention
- Currently no FDA approved therapeutics

BexotegrastUnderstanding the IPF commercial opportunity

CURRENT COMMERCIAL LANDSCAPE IN IPF

- Two marketed agents Esbriet[®] and Ofev[®] with >\$3 billion total global revenues in 2021
- Growing market with positive tailwinds
 - Increasing incidence of IPF with aging population
 - New therapies expanding treatable population

CHANGING TREATMENT LANDSCAPE

- Near-term patent expiry of current treatments
 - Esbriet: First generic sold May 2022
 - Ofev: Loss of US market exclusivity projected in 2025

SIGNIFICANT NEED FOR NEW THERAPEUTIC OPTIONS

- Esbriet and Ofev display modest slowing of IPF progression
 - No improvement on patient quality of life or survival benefit
 - Significant tolerability issues

Bexotegrast

A Potential Preferred Treatment Option

ANTI-FIBROTIC MoA

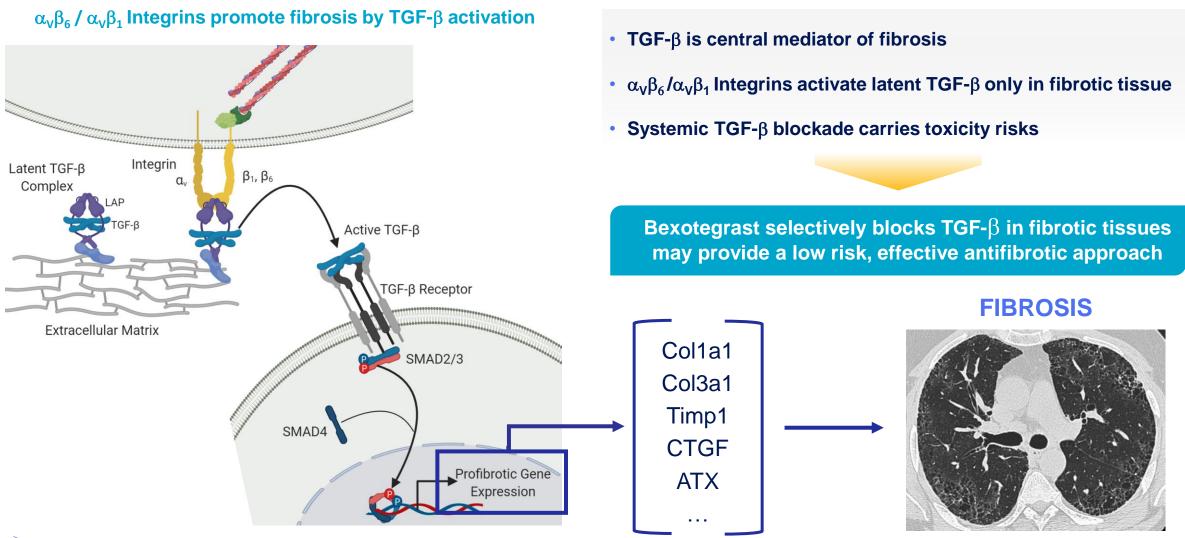
- Targeted inhibition of fibrotic process
 – tissue specific inhibition of TGF-β
- Dose-dependent FVC benefit in INTEGRIS-IPF study

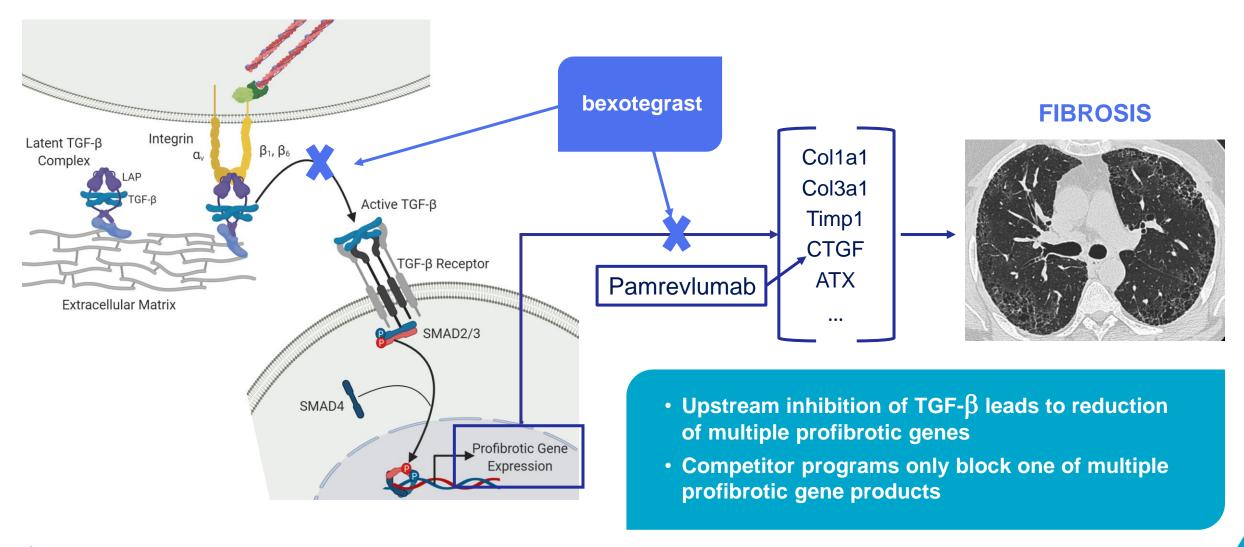
MONO & COMBO TREATMENT

- Will be evaluated as backbone therapy to be used as monotherapy, and with current treatments
- Flexibility in optimizing therapy for each patient

ORAL 1X DAILY DOSING

- Improvement over current multi-pill, multiple times a day options
- No added burden of monthly liver function monitoring


SAFETY / TOLERABILITY


- Well tolerated
- Low frequency of GI-related AEs in monotherapy setting

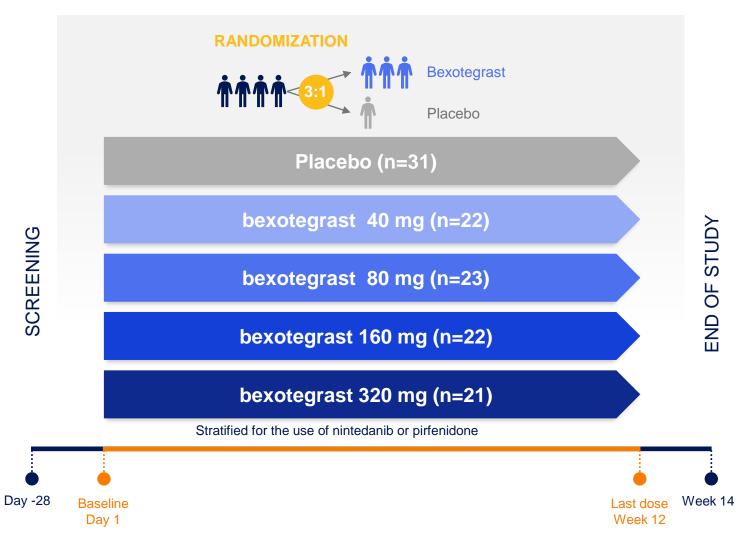
$\alpha_{\nu}\beta_{6}/\alpha_{\nu}\beta_{1}$ Integrins Drive Cell-Matrix Interactions in Fibrosis

Bexotegrast Provides Profound Antifibrotic Activity Through Upstream Inhibition of TGF-β Activation

Pliant Compounds Have Not Shown Adverse Effects Typical of Systemic Inhibition of TGF-β Pathways¹

By targeting integrins that are upregulated specifically in fibrotic tissues, Pliant's small molecule compounds may avoid toxicities associated with systemic TGF-β blockade¹

Affected organ system	Systemic TGF-β blockade	Observed with Pliant compounds? ¹
Cardiovascular System	Cardiotoxicity	NO
Immune System	Autoimmunity/Inflammation	NO
GI System	Autoimmunity/Inflammation	NO
Skin	Keratoacanthomas/SCC	NO
Hematology	Thrombocytopenia/Anemia	NO


Bexotegrast - Nonclinical Toxicology StudiesNo concerns for clinical advancement

GLP Study category	Studies completed	Findings with Bexotegrast (PLN-74809)
Repeat Dose Toxicology	 1-Month IND-enabling NHP and mouse 3-Month Sub-chronic NHP and mouse 9-Month Chronic NHP 6-Month Chronic Mouse 	 No findings limiting clinical advancement including No pulmonary infiltrates No bladder cancer NOAEL¹ in sub-chronic and chronic GLP tox studies at the highest dose tested in NHPs
Safety Pharmacology	 Standard cardiac ion channel panel Cardiovascular/respiratory in telemetered NHP 	No findings: No effect on respiratory or cardiovascular parameters
Genetic Toxicology	 Ames In vitro micronucleus In vivo micronucleus	No genotoxic findings: • Ames negative • Micronucleus negative
Reproductive Toxicology	Mouse Embryofetal DevelopmentRabbit Embryofetal DevelopmentMouse Fertility	No findings: No embryofetal effects No effects on fertility

600+ human subjects dosed to date with no safety concerns at doses up to 640 mg sd / 320 mg md

INTEGRIS-IPF Study Design and Objectives

PRIMARY AND SECONDARY ENDPOINTS

Safety, tolerability, PK

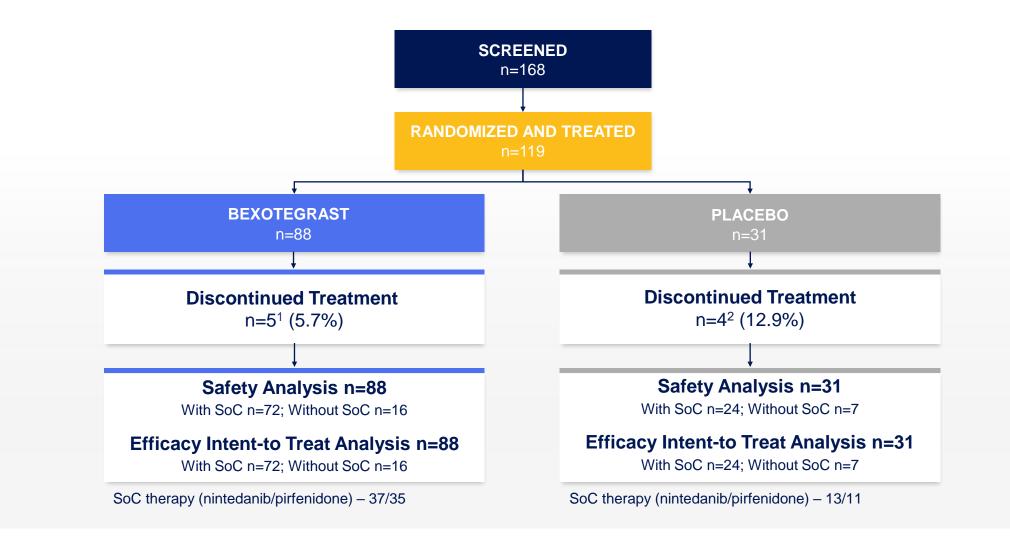
- Change in Forced Vital Capacity (FVC) over 12 weeks
- High Resolution CT-based Quantitative Lung Fibrosis (QLF) imaging
- Effect on selected biomarkers

Executive Summary

Bexotegrast 320 mg Well Tolerated Over 12 Weeks of Treatment

- All drug-related TEAEs were mild or moderate in severity
- Few discontinuations due to adverse events
- No drug-related SAEs

Bexotegrast 320 mg Demonstrated Statistically Significant Increase in FVC


- Statistically significant increase from baseline in mean FVC was observed at all timepoints with a mean difference from placebo of 140 mL at Week 12
- No participants experienced a decline of ≥10% in percent predicted FVC (FVCpp), a well-established predictor of death and disease progression in IPF ^{1,2}
- Bexotegrast treatment effect was observed with and without use of standard-of-care agents

Biomarker Results Support Bexotegrast's Antifibrotic Mechanism

- Dose-dependent antifibrotic effect seen on QLF Imaging, with no or limited progression at 160 mg and 320 mg
- Bexotegrast reduced circulating PRO-C3 and integrin beta-6 levels with greatest effect observed at 320 mg

Participant Disposition

Baseline Demographics

Characteristic	Bexotegrast 40 mg (n=22)	Bexotegrast 80 mg (n=23)	Bexotegrast 160 mg (n=22)	Bexotegrast 320 mg (n=21)	Bexotegrast All (n=88)	Placebo (n=31)
Male sex, n (%)	18 (81.8)	19 (82.6)	16 (72.7)	20 (95.2)	73 (83.0)	27 (87.1)
Female sex, n (%)	4 (18.2)	4 (17.4)	6 (27.3)	1 (4.8)	15 (17.0)	4 (12.9)
Age (yr), mean (SD)	69.2 (7.11)	74.2 (4.70)	71.5 (6.63)	70.6 (7.31)	71.4 (6.64)	72.1 (6.20)
Race, n (%)						
White	22 (100.0)	21 (91.3)	22 (100.0)	20 (95.2)	85 (96.6)	30 (96.8)
Asian	0	1 (4.3)	0	0	1 (1.1)	1 (3.2)
Other / Not Reported / Unknown	0	1 (4.3)	0	1 (4.8)	2 (2.3)	0
Weight (kg), mean (SD)	86.1 (18.22)	85.9 (14.95)	85.4 (13.51)	88.6 (15.52)	86.46 (15.52)	84.0 (11.41)
Body-mass index (kg/m²), mean (SD)	27.7 (4.21)	28.5 (5.79)	29.3 (4.66)	28.2 (4.18)	28.4 (4.73)	27.3 (2.57)

Baseline Disease Characteristics

Characteristic	Bexotegrast 40 mg (n=22)	Bexotegrast 80 mg (n=23)	Bexotegrast 160 mg (n=22)	Bexotegrast 320 mg (n=21)	Bexotegrast All (n=88)	Placebo (n=31)
Time since diagnosis of IPF (mo), mean (SD)	22.2 (12.44)	28.6 (17.08)	27.8 (12.43)	35.6 (29.06)	28.5 (19.11)	34.0 (21.62)
Standard of Care Use, n (%)	17 (77.3)	19 (82.6)	19 (86.4)	17 (81.0)	72 (81.8)	24 (77.4)
None	5 (22.72)	4 (17.39)	3 (13.63)	4 (19.0)	16 (18.2)	7 (22.6)
Nintedanib	12 (54.5)	9 (39.1)	7 (31.8)	9 (42.9)	37 (42.0)	13 (41.9)
Pirfenidone	5 (22.7)	10 (43.5)	12 (54.5)	8 (38.1)	35 (39.8)	11 (35.5)
Duration of Standard of Care at Randomization (mo), mean (SD)	19.5 (11.53)	20.2 (11.52)	20.1 (11.63)	24.4 (21.88)	21.0 (14.48)	22.6 (17.85)
FVC (mL)						
Mean (SD)	2,976.5 (861.01)	3,128.7 (814.20)	2,863.0 (725.39)	3,193.7 (674.01)	3,039.7 (771.20)	3,073.9 (773.54)
Median	2937.0	2929.0	2702.5	3256.0	2898.5	3179.0
Percent of predicted value (%), mean (SD)	74.8 (14.70)	82.7 (13.47)	78.8 (16.36)	77.7 (15.41)	78.5 (15.01)	77.7 (16.44)
Percent of predicted DLCO, corrected for the hemoglobin level (%), mean (SD)	57.2 (14.74)	51.8 (14.67)	48.6 (15.11)	47.9 (13.18)	51.5 (14.69)	50.1 (15.23)
GAP Stage, n (%)						
GAP Stage I	11 (50.0)	8 (34.8)	7 (31.8)	7 (33.3)	33 (37.5)	10 (32.3)
GAP Stage II	10 (45.5)	15 (65.2)	13 (59.1)	12 (57.1)	50 (56.8)	18 (58.1)
GAP Stage III	1 (4.5)	0	2 (9.1)	2 (9.5)	5 (5.7)	3 (9.7)

Safety Evaluation – Summary

- >
- Bexotegrast was well tolerated with no dose relationship for adverse events

- >
- No drug-related SAEs were observed

Most frequent TEAE was diarrhea (17.0% on active versus 9.7% on placebo)

• 14 of 15 participants receiving bexotegrast were on standard-of-care agents

Safety Summary

AE, n (%) of Participants Reporting	Bexotegrast 40 mg (n=22)	Bexotegrast 80 mg (n=23)	Bexotegrast 160 mg (n=22)	Bexotegrast 320 mg (n=21)	Bexotegrast All (n=88)	Placebo (n=31)
Any AEs	16 (72.7)	15 (65.2)	15 (68.2)	18 (85.7)	64 (72.7)	21 (67.7)
TEAE	16 (72.7)	15 (65.2)	14 (63.6)	17 (81.0)	62 (70.5)	21 (67.7)
Related to study drug	4 (18.2)	7 (30.4)	4 (18.2)	4 (19.0)	19 (21.6)	10 (32.3)
Serious TEAE	1 (4.5)	0	2 (9.1)	1 (4.8)	4 (4.5)	3 (9.7)
Related to study drug	0	0	0	0	0	0
TEAE of CTCAE Grade 3 or Higher	2 (9.1)	0	2 (9.1)	2 (9.5)	6 (6.8)	2 (6.5)
Related to study drug	0	0	1 (4.5)	0	1 (1.1)	0
TEAE Leading to Interruption of Study Drug	0	0	1 (4.5) 1	1 (4.8) ²	2 (2.3)	0
TEAE Leading to Withdrawal of Study Drug	0	0	0	3 (14.3) ^{2,3,4}	3 (3.4)	3 (9.7)
TEAE Leading to Early Termination from Study	0	0	0	3 (14.3) 2,3,4	3 (3.4)	2 (6.5)
TEAE Leading to Death	0	0	0	1 (4.8) ³	1 (1.1)	0

^{1 -} COVID-19; 2 - Abdominal pain/Diarrhea in participant with pre-existing ulcerative colitis; 3 - Acute respiratory failure in a GAP Stage III participant with pre-existing atrial fibrillation 8 days following elective atrioventricular node ablation;

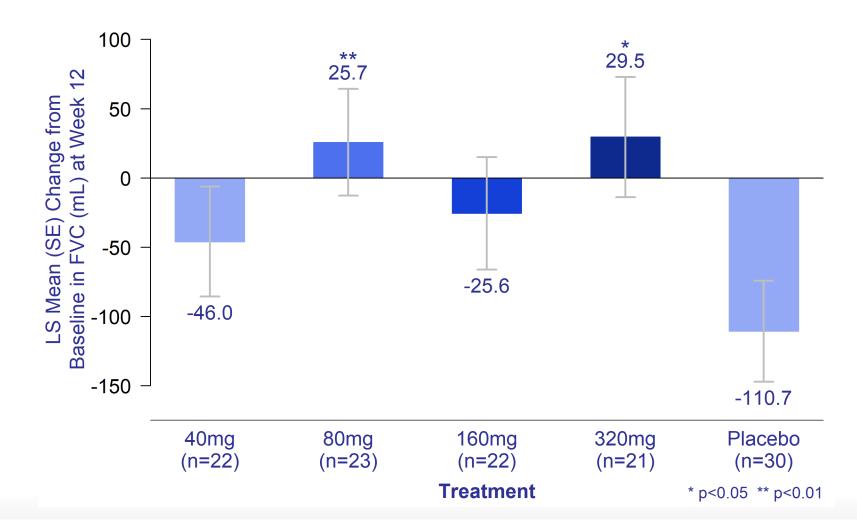
^{4 -} Diarrhea in participant with concomitant use of nintedanib

Most Frequent TEAEs – Any Causality

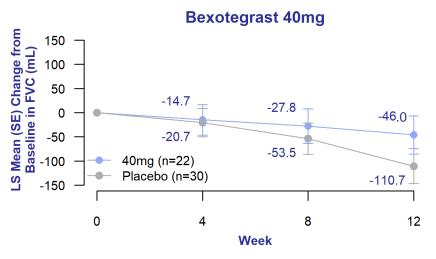
TEAE, n (%) of Participants Reporting	Bexotegrast 40 mg (n=22)	Bexotegrast 80 mg (n=23)	Bexotegrast 160 mg (n=22)	Bexotegrast 320 mg (n=21)	Bexotegrast All (n=88)	Placebo (n=31)
Most frequent TEAEs (≥ 10% in at least one arm)						
Diarrhea	2 (9.1)	5 (21.7)	5 (22.7)	3 (14.3)	15 (17.0)	3 (9.7)
Related to study drug	1 (4.5)	3 (13.0)	4 (18.2)	2 (9.5)	10 (11.4)	1 (3.2)

- 14 of 15 participants receiving bexotegrast with TEAEs of diarrhea were on standard of care
 - One participant with diarrhea not receiving standard of care had pre-existing ulcerative colitis
- All but one event were mild to moderate in severity; 2 participants discontinued bexotegrast due to mild diarrhea
- Diarrhea infrequently reported in bexotegrast Phase 1 trials

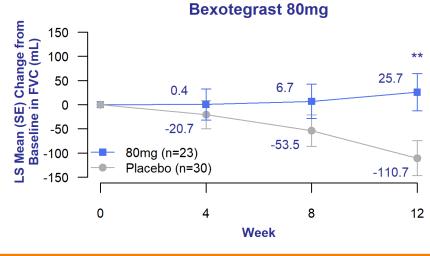
No SAEs were Related to Study Drug

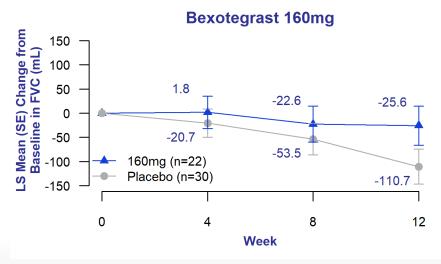

Patient Treatment Group	SAE Preferred Term	Standard Toxicity Grade	Drug Related	Any alternative cause or confounding factors?	Action Taken	Outcome
Bexotegrast	Acute respiratory failure	Grade 3 (Severe)	No	Removed carpet from home	Dose not changed	Recovered / resolved
40mg	Pneumonia	Grade 2 (Moderate)	No	without a mask	Dose not changed	Recovered / resolved
Bexotegrast 160mg	Idiopathic pulmonary fibrosis ¹	Grade 3 (Severe)	No	Underlying disease and atrial fibrillation	Not applicable - hospitalization	Not recovered / not resolved
Bexotegrast 160 mg	Atrial flutter	Grade 3 (Severe)	No	Underlying disease	Not applicable - hospitalization	Recovered / resolved
Bexotegrast 320mg	Acute respiratory failure ²	Grade 5 (Fatal)	No	Underlying disease ²	Drug withdrawn	Fatal
Placebo	Bladder dilatation	Grade 2 (Moderate)	No	No	Dose not changed - Foley catheter placed	Recovered / resolved with sequelae
Placebo	Respiratory failure	Grade 3 (Severe)	No	Coronary artery disease with triple vessel disease	Not applicable - early termination from the study	Recovered / resolved with sequelae
Placebo	Pulmonary fibrosis ³	Grade 3 (Severe)	No	No	Drug withdrawn - hospitalization	Recovered / resolved with sequelae

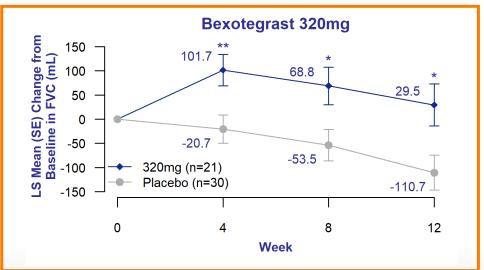
^{1 -} Acute exacerbation of IPF occurring ≈2 weeks after 12-week treatment was completed; 2- A GAP Stage III participant with preexisting atrial fibrillation, following elective atrioventricular node ablation;

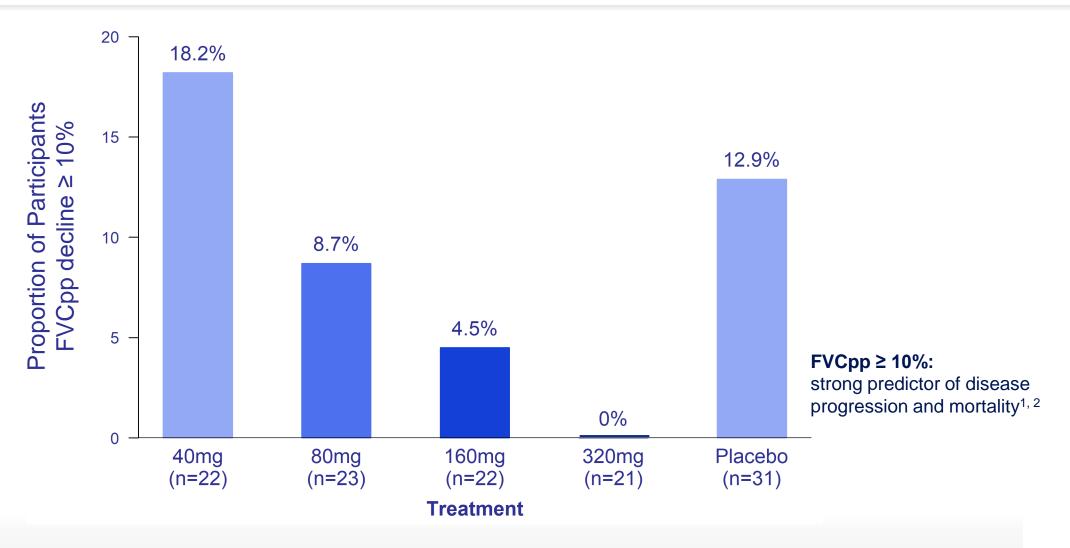

³⁻ Progression of fibrosis.

FVC Change from Baseline at Week 12 mITT Population

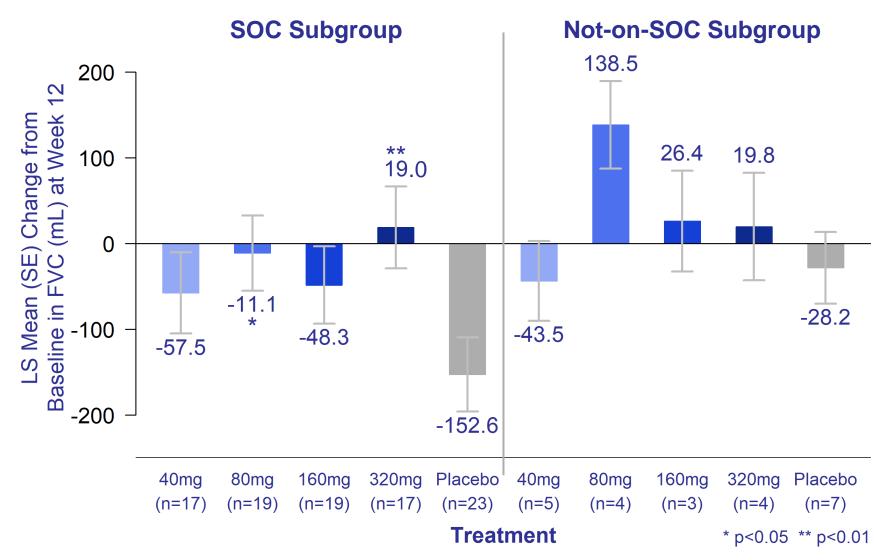




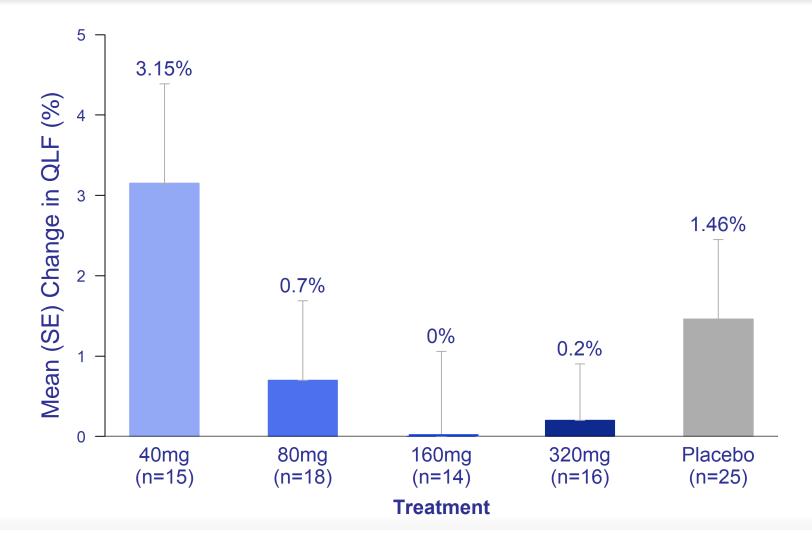

FVC Change from Baseline over 12 Weeks mITT Population



^{*} p < 0.05 vs placebo ** p < 0.01 vs placebo

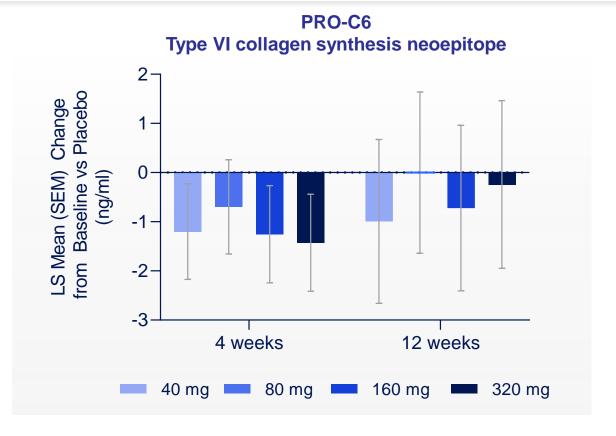

FVC = forced vital capacity; mITT= modified intent to treat; 1 participant in the placebo group was identified as a statistical outlier across all treatment groups and excluded from the mITT analysis.

Proportion of Participants with Relative FVCpp Decline ≥ 10% ITT Population



FVC Change from Baseline at Week 12 by SOC Subgroup mITT Population

QLF Mean Percent Change from Baseline at Week 12 Per CT protocol population

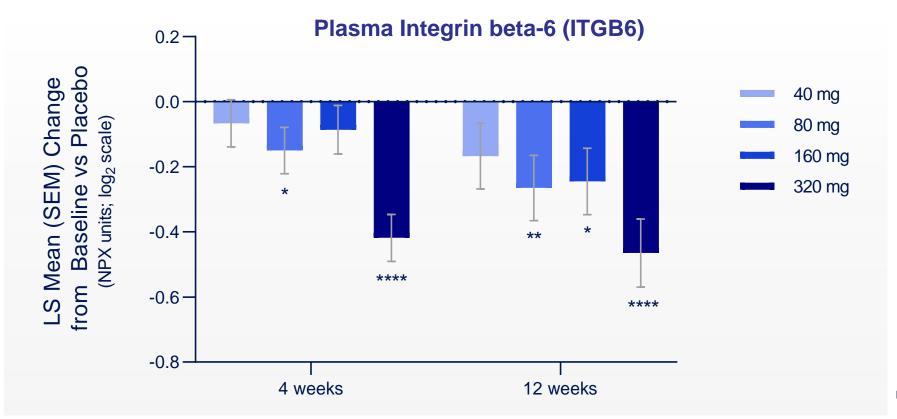


Bexotegrast Reduced Serum Biomarkers of Collagen Synthesis Change from Baseline at 4 and 12 Weeks vs. Placebo

Type III collagen synthesis neoepitope 2 from Baseline vs Placebo Change LS Mean (SEM) (ng/ml) -1--2 4 weeks 12 weeks 40 ma 80 mg 160 mg 320 mg

PRO-C3

LS = Least Squares; SE = Standard Error


PRO-C3 and PRO-C6, serum biomarkers of type III and VI collagen synthesis, were previously shown to be elevated in patients with IPF and associated with progressive disease¹

^{**} p < 0.01 vs placebo

Bexotegrast Reduced Integrin beta-6 Plasma Levels

Change from Baseline at 4 and 12 Weeks vs. Placebo

* p < 0.05 vs placebo

** p < 0.01 vs placebo **** p < 0.0001 vs placebo

Relative quantitation of integrin beta-6 reported in in log₂ scale

Elevated integrin beta-6 plasma levels previously shown to be associated with ILD progression, as defined by mortality, transplant, or ≥ 10% relative reduction in FVC (mL) over 12 months¹

Conclusion and Next Steps

Bexotegrast 320 mg dose demonstrated favorable safety and tolerability profile, and outperformed lower dose groups in overall treatment effects

Observed treatment effect on top of standard-of-care therapy supports bexotegrast's potential to advance the treatment of IPF

The 320 mg group will continue until all participants have been treated for at least 24 weeks, with final data expected in the second quarter of 2023

Pliant plans to initiate Phase 2b clinical trial of bexotegrast in mid-2023

Bexotegrast Phase 2a 320 mg Dose Global Safety-PK-Exploratory **Efficacy Trial in IPF**

Enrollment Complete; 24-Week Data Expected in Second Quarter 2023

Randomization 3:1 (bexotegrast : placebo)

KEY INCLUSION/EXCLUSION CRITERIA

- Adults with IPF diagnosis
- FVC ≥ 45% of predicted
- Stratified for pirfenidone or nintedanib use

Placebo (n=7)

bexotegrast 320 mg (n=21)

PRIMARY AND SECONDARY ENDPOINTS

Safety, tolerability, PK

- Change in FVC at wk 24 and up to 48 wks
- High Resolution CT-based Quantitative Lung Fibrosis (QLF) imaging
- Effect on selected biomarkers

Bexotegrast INTEGRIS-PSC – Phase 2a Global Safety-PK-Fibrosis and Cholestasis Biomarker Trial in PSC

Enrollment Complete; 12-Week Data Expected in Third Quarter 2023

KEY INCLUSION/EXCLUSION CRITERIA

- Adults with large duct PSC
- Pre-cirrhotic/no hepatic impairment
- Stratified for UDCA use

Randomization 3:1 (bexotegrast : placebo)

Placebo (n=21)

bexotegrast 40 mg (n=21)

bexotegrast 80 mg (n=21)

bexotegrast 160 mg (n=21)

PRIMARY AND SECONDARY ENDPOINTS

Safety, tolerability, PK

- Effect on fibrosis biomarkers (e.g., Pro-C3, ELF)
- Change in ALP over 12 weeks
- Imaging

Bexotegrast Phase 2a 320 mg Dose Global Safety-PK-Exploratory **Efficacy Trial in PSC**

Enrollment Open

Randomization 3:1 (bexotegrast : placebo)

KEY INCLUSION/EXCLUSION CRITERIA

- Adults with large duct PSC
- Pre-cirrhotic
- Stable IBD, if present
- Stratified for UDCA use

Placebo (n=7)

bexotegrast 320 mg (n=21)

PRIMARY AND SECONDARY ENDPOINTS

Safety, tolerability, PK

- Effect on fibrosis biomarkers (e.g., Pro-C3, ELF) at Wk 12 and 24
- Change in ALP at Wk 12 and 24

Reprograming the Immunosuppressive Tumor Micro-Environment of Solid Tumors

Potential First-in-Class Small Molecule Dual $\alpha_V \beta_8$ / $\alpha_V \beta_1$ Inhibitor

 $\alpha_V \beta_8$ Biology

α_Vβ₈ regulates **TGF**β activation with a central role in immune suppression in cancer

Pharmacology

Highly selective inhibitor of $α_Vβ_8 & α_Vβ_1$ Supports human dose projections and high target coverage

Compelling rationale for $α_Vβ_8$ combination therapy with PD-(L)1

Differentiation

Dual mode of action targeting T cells $\alpha_V \beta_8$ & Fibroblasts $\alpha_V \beta_1$ PO Dosing

Development Status

No major findings in 28D GLP rat & dog toxicology studies

IND submitted Q4 2022

FIH study to start 2Q 2023

Substantial opportunity for an oral medicine targeting TGF β activation in ICI resistance via $\alpha_V \beta_8$

Pliant's Approach to Addressing Immune Checkpoint Inhibitor Resistance

Common Mechanisms of I-O Resistance

Tumor-specific IFNγ levels at baseline predict pembrolizumab responses [4,5]

Immunosuppressive stroma / myeloid compartment associated with active TGFβ signaling predicts atezolizumab responses [3]

Tumor infiltrating lymphocytes highly sensitive to TGFβ immunosuppression [e.g.1,2]

Pliant's Approach

Potently inhibit general immunosuppressive immune checkpoint to restore CD8 T cell IFNy secretion

Prevent both free and latent-TGFβ signaling from major integrin sources found in solid tumors

Dual mechanism significantly increases quantity of TILs and increase resistance to exhaustion

Dual inhibition of α_Vβ₈ & PD-1 exploit unexpected synergistic pathways leading to enhanced tumor killing⁶

⁴⁻ Ayers, M et al. J Clin Invest. 2017 127(8):2930-2940. 5- Cindy Yang, S.Y. et al. Nat Commun. 2021 12, 5137. 6- Larrick J et al., DOI: https://doi.org/10.21203/rs.3.rs-1778271/v1

¹⁻ Thomas DA, et al. Cancer Cell. 2005 Nov;8(5):369-80. 2- Yang, ZZ. et al. Leukemia. 2014 28, 1872–1884. 3- Mariathasan, S. et al. 2018 Nature 554, 544–548.

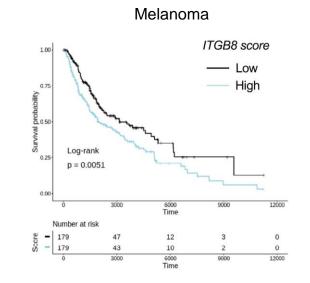
High ITGB8 on Tumor or T cells Has Poor Prognosis

High ITGB8 expression on tumor cells has a worse clinical prognosis

Takasaka N. et al. *JCI Insight 2018;3* doi 10.1172/jci.insight.122591

0.8 0.8 0.8 Probability 0.6 0.6 0.6 0.4 0.4 0.4 Expression 0.2 Expression 0.2 0.2 Expression Low High High 0.0 100 150 200 50 100 150 150 200 0 Months Months Months

1.0

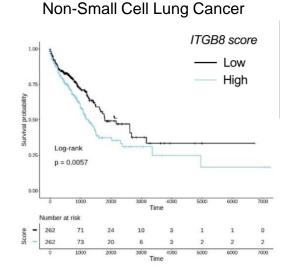

Ovarian Cancer

HR=1.27 (1.03-1.57)

p=0.027

High ITGB8 score on infiltrating T cells correlates with worse prognosis

Lainé A., *Nat Commun* **12**, 6228 (2021) doi: 10.1038/s41467-021-26352-2

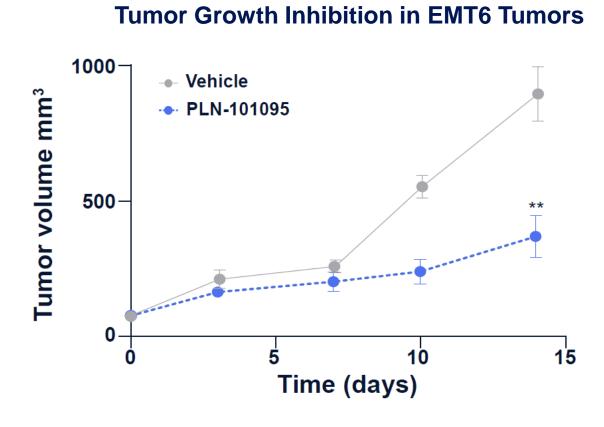


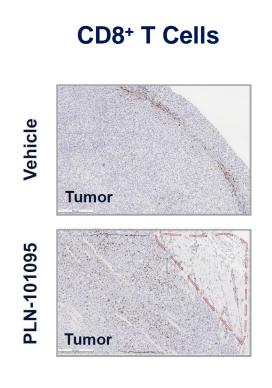
Breast Cancer

HR=2.06 (1.07-3.99)

p = 0.027

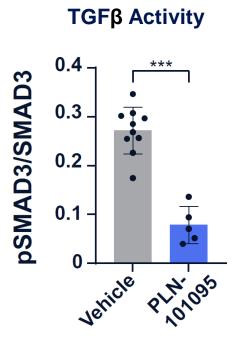
1.0

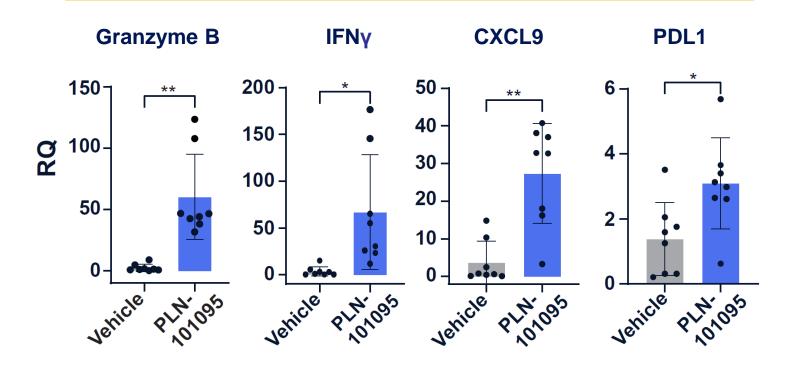

Lung Cancer


HR=1.22 (1.03-1.44)


p=0.0019

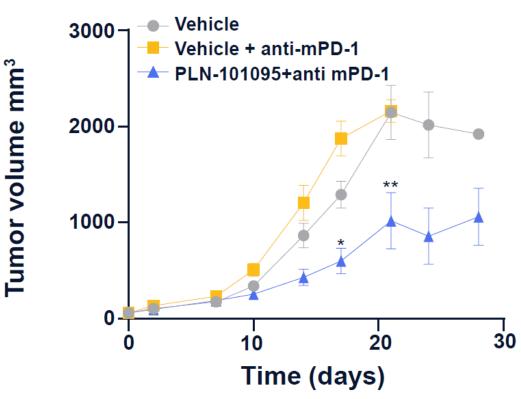
PLN-101095 Inhibited Tumor Growth and Promoted T cell Infiltration in the EMT6 Model

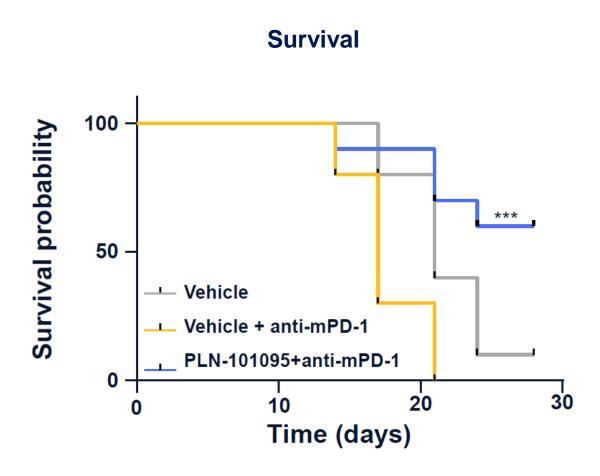




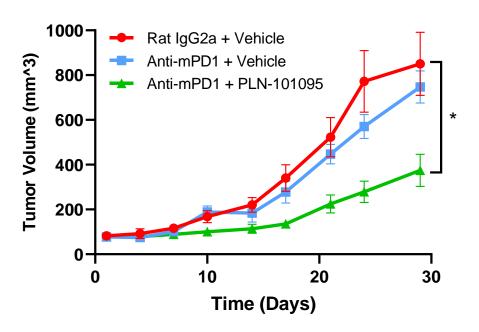
Single Agent PLN-101095 Promoted T Cell Infiltration

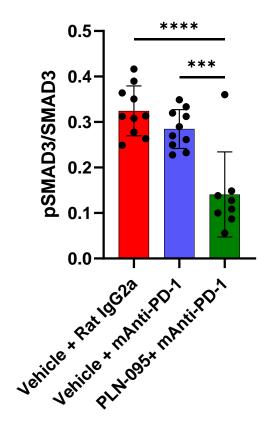
Reduced TGF-β Signaling


Increased Expression of IFNy-Regulated Genes

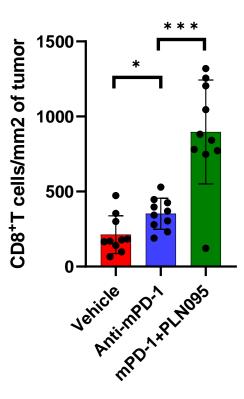


PLN-101095 Plus αPD-1 Demonstrated High Tumor Growth Inhibition in EMT6 Syngeneic Mouse Model

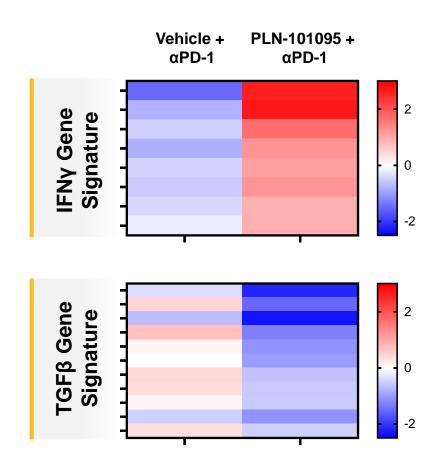


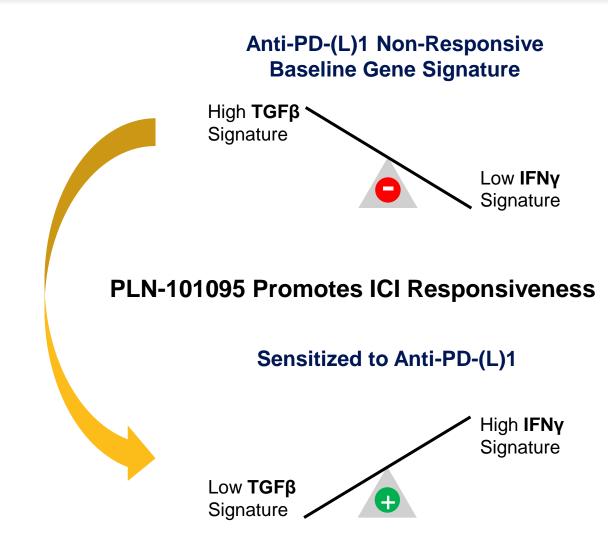


PLN-101095 Inhibited Pan02 Tumor Growth & Increases T cell Infiltration


Tumor Growth Inhibition in Pan02 Tumors

TGFβ Signaling




CD8+ T Cells

PLN-101095 Potently Increased IFNγ Signature & Reduces TGFβ Gene Signatures

PLN-101095 Nonclinical Safety Studies No Effects of Concern for Clinical Advancement

Study Category	Studies Completed	Findings with PLN-101095
Repeat Dose Toxicology	 14-day DRF in rat 7-day DRF in dog GLP 1-Month IND-enabling rat GLP 1-Month IND-enabling dog 	 No adverse findings in rat or dog DRF All doses tolerated NOAEL¹ set at highest dose
Safety Pharmacology	GLP hERGSafety44	No findings
Genetic Toxicology	GLP AmesGLP In vitro micronucleus	No findings

Key Program Highlights

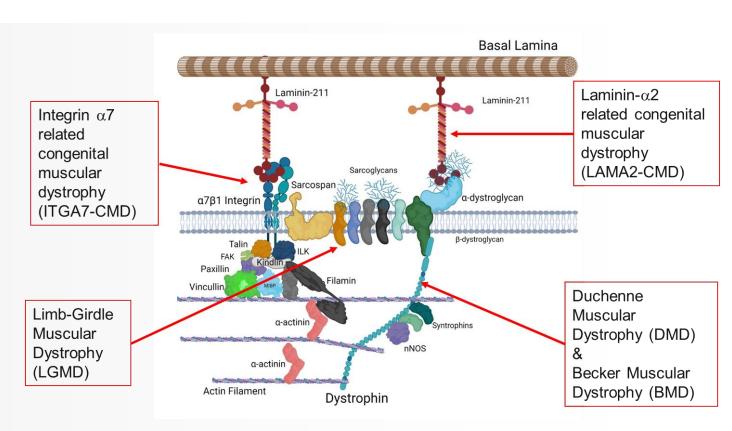
Oral route of administration of small molecule $\alpha_V \beta_8$ inhibitor

Highly potent dual inhibitor of $\alpha_V \beta_8 / \alpha_V \beta_1$ inhibitor

Activity demonstrated in multiple PD-1 resistant tumor models

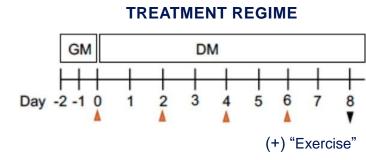
Greater reduction in **TGF-\beta signaling** than either $\alpha_V \beta_8$ or TGF- $\beta_{1,2}$ mAb

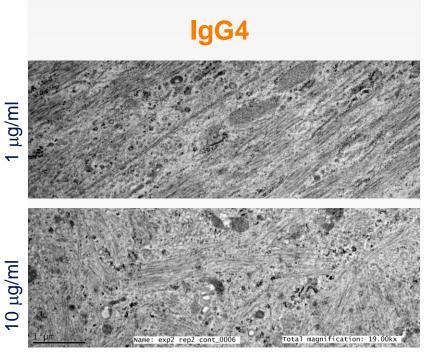
Significant reduction in tumor fibrogenesis

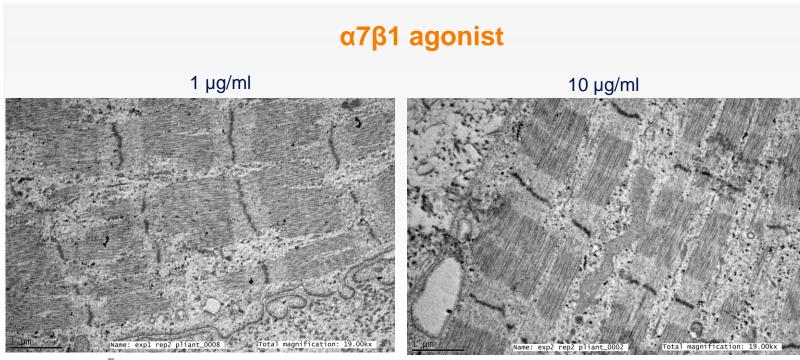

Phase 1 study initiation for PLN-101095 in second quarter 2023

$\alpha_7\beta_1$: A Drug Target in Muscular Dystrophies

- Predominantly expressed in skeletal, heart and smooth muscle
- $\alpha_7 \beta_1$ strong genetic modifier in MDX mice
 - Lack of $\alpha_7\beta_1$ worsens disease phenotype
 - Over expression increases survival and improves function
 - Pharmacological agents that increase expression show similar effects
- Human mutations in α₇β₁ result in congenital
 MD
- ITGA7 frameshift (heterozygous, nonfunctional mutation is associated with lean muscle volume reduction (UK Biobank)

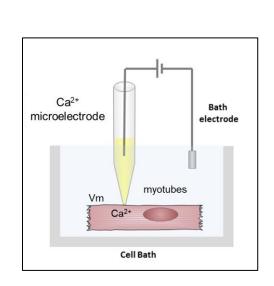



Dean J Burkin, PhD and Ryan Wuebbles, PhD Generated using BioRender



Integrin α₇β₁ Agonist Antibody Promoted Muscle Maturation

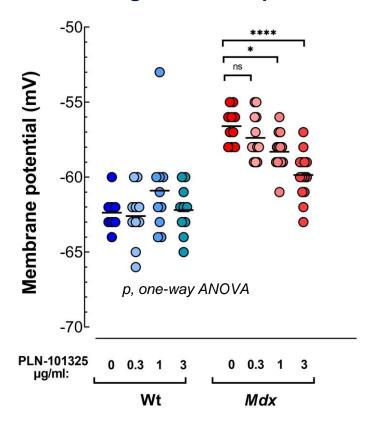
AB1071 hMMTs treated with 1 ug/ml or 10 ug/ml
Pliant antibody contain myotubes with substantially improved sarcomere organization that can withstand tetanic stimulation compared to lgG4 control



Effect of PLN-101325 in Ca2+ Homeostasis and Resting Membrane Potential of B10-mdx Myotubes

Reduced intracellular resting calcium and hyperpolarization of the membrane potentially support improved plasmalemmal integrity by PLN-101325

Mdx

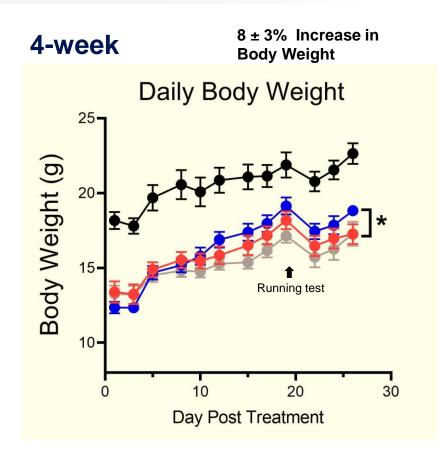


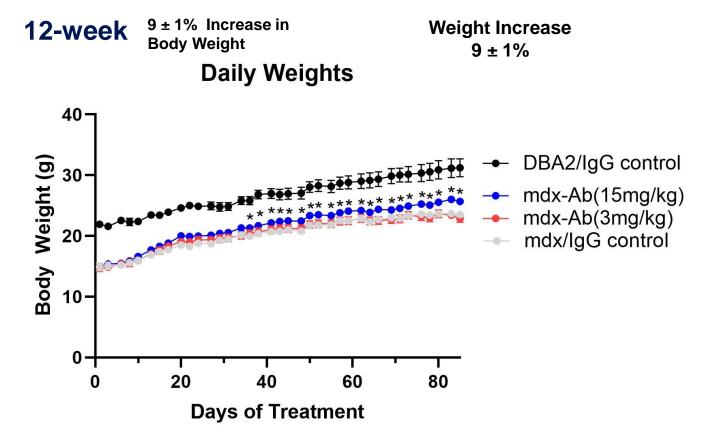
500 г **** Intracellular resting [Ca²⁺] (nM) p, one-way ANOVA 400 200 100 0.3 1 3 0.3 1 3 PLN-101325

Wt

Intracellular resting Ca²⁺

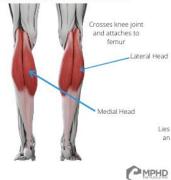
Resting membrane potential



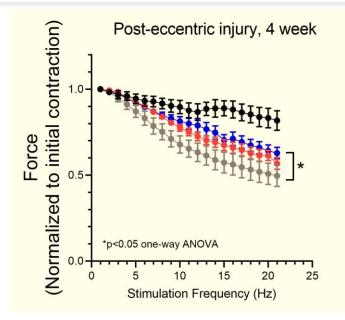


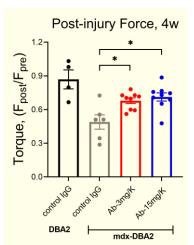
Body Weight Improvement at 4 and 12 Weeks of Treatment

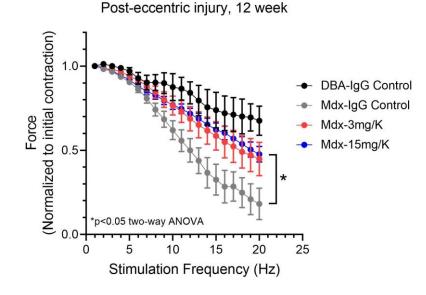
- PLN-101325 3x/ wk IP
- 5-6 wk old D2-MDX mice

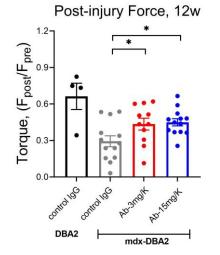

Improved Response to Post Eccentric Injury at 4 and 12 Weeks of Treatment

Plantar flexion test

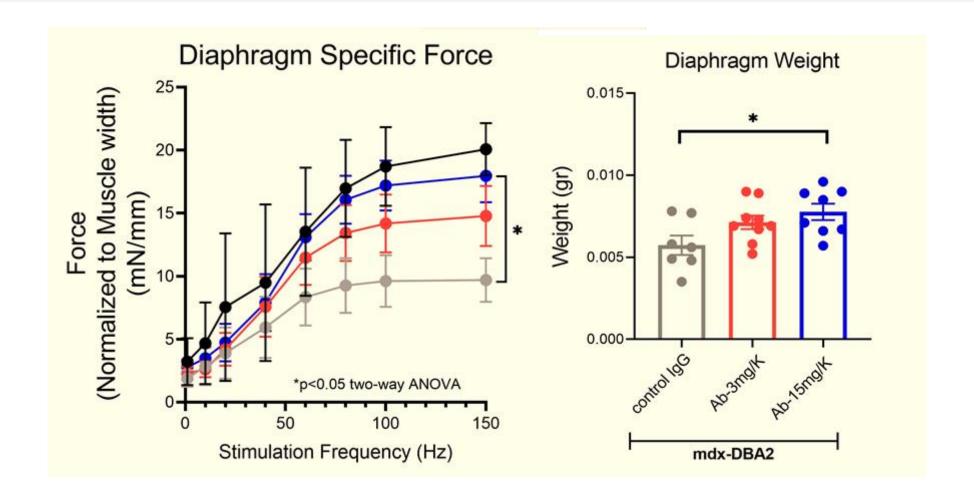

- Gastrocnemius (GC): Premier mover muscle for plantar flexion.
- GC only muscle to join both ankle and knee.



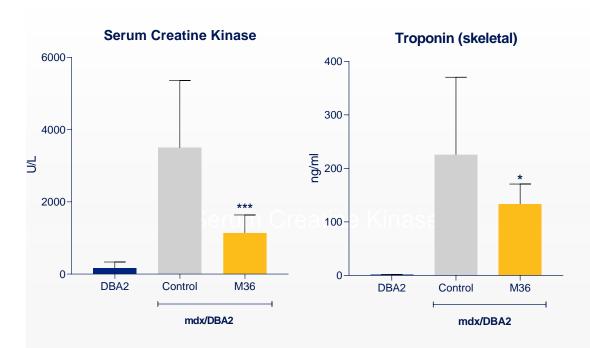

Gastrocnemius

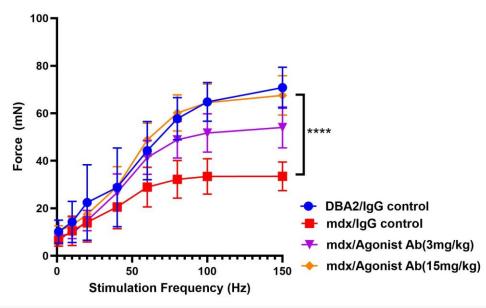


Eccentric muscle injury protocol: A series of 20 tetanic stimulations (80Hz, 0.2ms pulse, 500ms duration) are delivered at 0.1Hz frequency. The foot is rotated against the direction of contraction by 10° over 250ms, resulting in an eccentric contraction

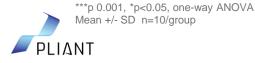


Diaphragm Force Significantly Improved at 4 Weeks of Treatment

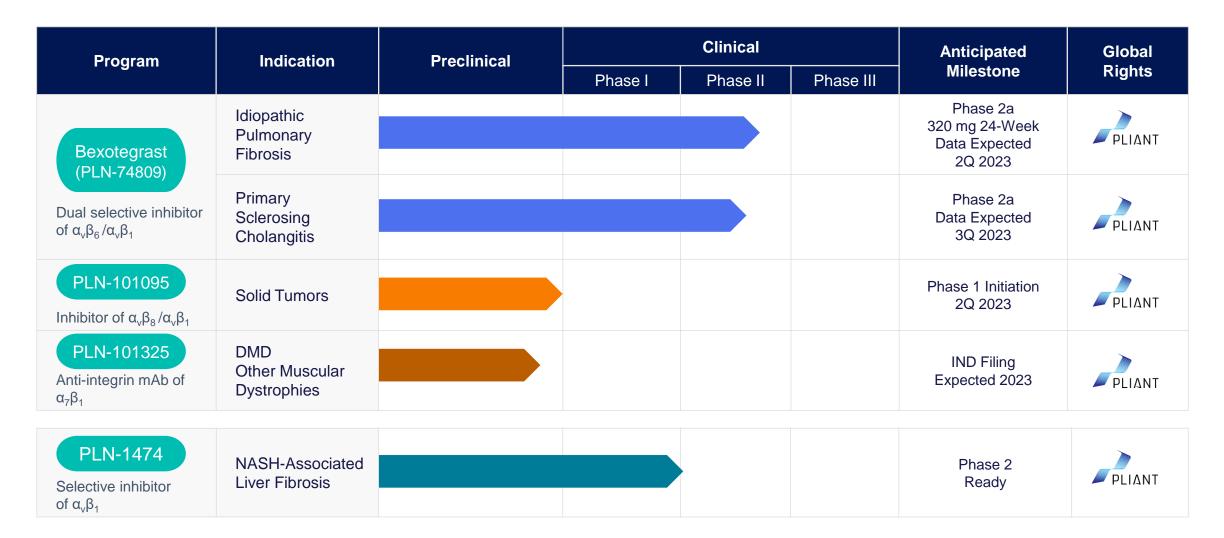



MYOLOGICA

Pliant's $\alpha_7\beta_1$ mAb Demonstrated Improved Muscle Membrane Integrity and Diaphragm Function in Mouse DMD Model


Antibody treatment protected against muscle damage

 Reduction of clinical biomarkers including serum creatine kinase and skeletal troponin Duchenne muscular dystrophy (DMD) causes progressive wasting of cardiac and respiratory muscles (main cause of death)



 Improvement in diaphragm function is expected to significantly improve patient pulmonary function

****p 0.0001, two-way ANOVA

Pliant Development Pipeline

